Directors

profile_image
Prof. Dr. Manfred Milinski
Scientific Member
Phone:+49 4522 763 254Fax:+49 4522 763 310
profile_image
Prof. Dr. Diethard Tautz
Scientific Member
Phone:+49 4522 763 390Fax:+49 4522 763 281
Email:tautz@...

Personal Website

profile_image
Prof. Dr. Arne Traulsen
Scientific Member
Phone:+49 4522 763 239Fax:+49 4522 763 260

General Contact

profile_image
Dr. Kerstin Mehnert
Scientific Coordinator
Phone:+49 4522 763 233Fax:+49 4522 763 351

Research

Research at the Max Planck Institute for Evolutionary Biology

Research at the Max Planck Institute for Evolutionary Biology is engaged in all themes concerning the wide field of evolution. Currently there are three departments with several research groups and some more independend research and guest groups:

The department has three main research areas. (1) The evolution of sex and mate choice (2) the evolution of complex parasite life-cycles and (3) the evolution of cooperation. <br /> Part of the departmant are the Research Group Parasitolgy (Kalbe), the Emmy Noether Group Community Dynamics (Becks) and the Emmy Noether Group Evolutionary Immunogenomics (Lenz).

Department Evolutionary Ecology (Milinski)

The department has three main research areas. (1) The evolution of sex and mate choice (2) the evolution of complex parasite life-cycles and (3) the evolution of cooperation.
Part of the departmant are the Research Group Parasitolgy (Kalbe), the Emmy Noether Group Community Dynamics (Becks) and the Emmy Noether Group Evolutionary Immunogenomics (Lenz). [more]
The group of Diethard Tautz is interested in the identification and characterization of genes involved in adaptation processes using the house mouse (<em>Mus musculus</em>) as a model system. It applies a broad range of genomic and other techniques. <br /> Part of the Department are the Research Group Bioinformatics (Haubold), the Research Group Evolutionary Genetics of Fishes (Nolte) and the Research Group Population Genetics (Reed).

Department Evolutionary Genetics (Tautz)

The group of Diethard Tautz is interested in the identification and characterization of genes involved in adaptation processes using the house mouse (Mus musculus) as a model system. It applies a broad range of genomic and other techniques.
Part of the Department are the Research Group Bioinformatics (Haubold), the Research Group Evolutionary Genetics of Fishes (Nolte) and the Research Group Population Genetics (Reed). [more]
The evolutionary theory group uses mathematics and computer simulations to study the dynamics of evolution. Our team is interdisciplinary, with backgrounds ranging from biology, physics, and mathematics to computer science and economics.

Department Evolutionary Theory (Traulsen)

The evolutionary theory group uses mathematics and computer simulations to study the dynamics of evolution. Our team is interdisciplinary, with backgrounds ranging from biology, physics, and mathematics to computer science and economics. [more]
The independent Experimental Evolution Group uses experiments to investigate evolutionary and ecological processes. Evolution is often thought of as a slow process, but microbes with short generation times and large population sizes can evolve rapidly in laboratory experiments.

Max Planck Research Group Experimental Evolution (Greig)

The independent Experimental Evolution Group uses experiments to investigate evolutionary and ecological processes. Evolution is often thought of as a slow process, but microbes with short generation times and large population sizes can evolve rapidly in laboratory experiments. [more]
<p>With our research we want to identify and map the genes behind the components shaping the migratory phenotype. We want to understand: <em>What </em><em>is the genetic basis of migration, and which signalling pathways are associated with variation of the migratory phenotype?</em></p>

Max Planck Research Group Behavioural Genomics (Liedvogel)

With our research we want to identify and map the genes behind the components shaping the migratory phenotype. We want to understand: What is the genetic basis of migration, and which signalling pathways are associated with variation of the migratory phenotype?

[more]
Nature is structured in time by the continuous cycles of the seasons, night and day, the moon phases and the tides. Most organisms use endogenous biological clocks to anticipate these regular changes in their environment. To date we have a good understanding of the molecular basis of circadian clocks, which control the daily rhythms of physiology and behaviour. However, the molecular clockworks underlying seasonal, lunar and tidal rhythms are still largely enigmatic.

Max Planck Research Group Biological Clocks (Kaiser)

Nature is structured in time by the continuous cycles of the seasons, night and day, the moon phases and the tides. Most organisms use endogenous biological clocks to anticipate these regular changes in their environment. To date we have a good understanding of the molecular basis of circadian clocks, which control the daily rhythms of physiology and behaviour. However, the molecular clockworks underlying seasonal, lunar and tidal rhythms are still largely enigmatic. [more]

Max Planck Fellow Group Environmental Genomics (Stukenbrock)

Research in the Environmental Genomics group focuses on adaptation of parasites to their hosts and to the environment in which they exist. As model system we use a group of closely related plant pathogenic fungi in the genus Zymoseptoria. We integrate genomics, transcriptomics, and experimental and molecular approaches to understand adaptive evolution and diversification of Zymoseptoria spp. In a more recently initiated study we address the importance of different histone modifications in gene regulation and genome stability.

 

[more]
John Baines is Professor of Evolutionary Genomics at the Christian-Albrechts-University of Kiel since April 2009. As part of the Excellence Cluster "Inflammation at Interfaces", he has a dual appointment in both the Medical Faculty of the CAU and at the Max Planck Institute for Evolutionary Biology in nearby Plön.

Guest Group Evolutionary Genomics (Baines)

John Baines is Professor of Evolutionary Genomics at the Christian-Albrechts-University of Kiel since April 2009. As part of the Excellence Cluster "Inflammation at Interfaces", he has a dual appointment in both the Medical Faculty of the CAU and at the Max Planck Institute for Evolutionary Biology in nearby Plön. [more]
The group's work is both theoretical and empirical and makes frequent use of experimental microbial populations to study evolutionary process. Evolutionary transitions in individuality and the origins of multicellularity are a growing fascination.

Department Microbial Population Biology (Rainey)

The group's work is both theoretical and empirical and makes frequent use of experimental microbial populations to study evolutionary process. Evolutionary transitions in individuality and the origins of multicellularity are a growing fascination. [more]
<p>During his time as director at the MPI for Limnology, Winfried Lampert developed an evolutionary approach to understanding the interactions in aquatic ecosystems. One result of his work was the establishment of microcrustaceans of the genus <em>Daphnia</em> (water flea) as model organisms for ecological and ecogenomic research. Since the genome of <em>Daphnia pulex</em> was sequenced, and described in 2011, this goal has been achieved.</p>

Emeritus Group Lampert

During his time as director at the MPI for Limnology, Winfried Lampert developed an evolutionary approach to understanding the interactions in aquatic ecosystems. One result of his work was the establishment of microcrustaceans of the genus Daphnia (water flea) as model organisms for ecological and ecogenomic research. Since the genome of Daphnia pulex was sequenced, and described in 2011, this goal has been achieved.

[more]
 
loading content