
NakedCPU, which provides full access to hardware and a
CPU without any restrictions imposed by the OS. Impor-
tantly, the processor isn’t obscured by Linux, DOS, or
Windows, and is operating in its most interesting and
powerful mode—the protected mode. In this article, the
users are referred to as inquirers, because the NakedCPU
is made for researchers (i.e., devoted geeks) rather than
regular users.

My aim is to provide you inquirers with some help navi-
gating hardware documentation, which is confusing and
otherwise difficult to find. I won’t restate the documenta-
tion because many computer concepts and technologies
quickly become obsolete. With this article, however,
you’ll find it easier to follow the newer technologies and
documentation.

PROCESSORS & PLATFORMS
Think for a moment about one of the modern Intel CPU

varieties: the Intel Core 2 Duo processor. This impressive

lectronic projects involving microcontrollers are
popular among design enthusiasts and profession-

als alike. Many interesting applications have been made
with microcontrollers, and programming them can be a
lot of fun. At the same time, the powerful central pro-
cessing unit (CPU) found in the personal computer
(PC)—which serves every electronics designer on a daily
basis (including microcontroller programming)—is lack-
ing such attention. Most experimentation with a PC is
limited to developing high-level code software with the
aid of numerous libraries and technologies hiding the
hardware beneath layers and layers of code. Unlimited
experimentation with PC hardware is rarely possible.
However, you have to install drivers, enabling some
access to hardware, because the operating system (OS)
naturally does not permit us to do any low-level activi-
ties. The sad part is that such drivers are mysterious
themselves. It is safe to say hardware programming was
well known to many computer professionals and enthusi-
asts in the 1980s. Later, many people forgot about it,
while the technology tremendously leapt ahead. In this
article, I try to bridge the gap in time and revive interest
in hardware programming based on state-of-the-art tech-
nologies and concepts. There is a Russian saying, “Every-
thing new is actually well-forgotten old.”

WHAT IS THE NakedCPU?
This article is a result of my interest in the Intel CPU,

chipset, I/O controller, and other essential PC devices
from the perspective of low-level hardware programming
unobstructed by an OS and drivers. My motivation was
to reach out to people with inquisitive minds who would
appreciate the possibility to directly experiment with the
CPU, chipset, and other hardware. Here I’ll present the

24 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

2
–

Iss
ue

 2
59

The first part of this two-part series provides an overview of the NakedCPU. This platform
is designed to provide full access to hardware and a CPU without any operating system
restrictions while working in the protected mode.

The NakedCPU (Part 1)

E

FE
AT

UR
E

ARTICLE
by Alexander Pozhitkov (USA)

Hardware Experiments and a Roadmap for
Navigating Documentation

Figure 1—The NakedCPU and master computers are connected via a
serial interface. The NakedCPU does not need a keyboard or a monitor.

NakedCPU Master

RS-232

http://www.circuitcellar.com
nprice
Sticky Note
Unmarked set by nprice

nprice
Text Box
Circuit Cellar. Reprinted by permission. Entire contents copyright ©2012 Circuit Cellar, Inc. All rights reserved. For subscription information, go to www.circuitcellar.com/subscription, call 800-269-6301, or email circuitcellar@pcspublink.com.

easiest way to supply the NakedCPU with a start-up code is
to prepare a bootable floppy disk with your own code. Cer-
tainly, one can also put this code onto a hard drive.
The start-up code (up to 512 bytes) was written in

Assembly language and must be stored in sector 0—that
is, the master boot record (MBR) of the disk. The Assem-
bly language compilers and linkers, such as MASM, were
not used to prepare the MBR due to various difficulties,
although they may be suitable as well. There is, however,
a binary editor, called HexIt, which among other things
enables direct conversion of Assembly commands into
binary code.[5] Using this editor, a binary file of the future
MBR was created. The file’s content is available on the
Circuit Cellar FTP site. Refer to Table 1 and Table 2 for
more details about the content.
A small utility, Firstsectwrite.exe (also available on the

Circuit Cellar FTP site), was written to transfer this file
into sector 0 of the disk. Although the code of this utility
is quite simple, it deserves some attention. A Windows API
call to CreateFile(TEXT(“\\\\.\\A:”)...) opens raw
communication with a disk—a floppy drive A in this
case—to enable writes into the sector 0. It is important to
note that this call will be only be successful under the
administrator account.
I used a Dell Optiplex 760 computer to conduct the

experiments. It had a floppy drive attached via a USB. BIOS
start-up options enabled me to boot up the computer from
such a drive.

THE NakedOS
It may sound contradictive to the spirit of the article to be

OS-free; however, the NakedCPU is booted up with a tiny
(262 bytes long) 32-bit “operating system,” the NakedOS,
which enables the NakedCPU to communicate with the
outside world via a serial port. In fact, I did not compromise
my principle of truly free exploration, because the NakedOS

processor is capable of consuming up to 75 A of current![1] It
is not a simple processor. Its documentation consists of five
volumes with the total page count of approximately 3,800
pages.[2] The Intel CPU does not operate alone. It is inter-
faced to a chipset known as a graphics and memory con-
troller hub (GMCH). The chipset on the other side is con-
nected to an I/O controller hub (ICH). Interestingly, this
arrangement is analogous to your nervous system with a
brain, a brainstem, and a spinal cord. GMCH and ICH are
processors themselves, containing hundreds of configura-
tion and control registers. The documentation on GMCH
and ICH spans more than 1,400 pages.[3, 4] It’s no wonder
OSes hide actual hardware under a thick blanket of inter-
mediate code!
It is not easy to experiment with the Intel CPU given

the complexity of surrounding hardware, such as the
chipset, network controller, and so forth. Another difficul-
ty is the fact that the documentation is filled with electri-
cal engineering abbreviations and concepts. Also, pervasive
layers of OS code interfere with truly free exploration.
The NakedCPU is an experimental platform exposing

the hardware internals of a PC. Experimentation with
NakedCPU requires two computers (see Figure 1). One is
the master computer with Windows and Visual Studio soft-
ware, whose job is interacting with us and the second com-
puter. The second computer—the NakedCPU—is connect-
ed to the master via an RS-232 interface.
The NakedCPU computer is booted up with a small

amount of start-up code (available on the Circuit Cellar
FTP site), which enables it to communicate via RS-232
with the master. Upon start-up, the NakedCPU expects
two separate packages of bytes: one is a stream of Intel
CPU opcodes to be executed (i.e., the executable) and the
other one is the data to be processed. The executable can
modify any part of memory, chipset registers, and so
forth, and even overwrite the start-up code. In other
words, the freedom is yours.

STARTING THE NakedCPU
The NakedCPU won’t run without some sort of a start-up

code. At start-up, two tasks must be accomplished: switch
the CPU into the Protected mode and begin listening on the
serial port for two packets of bytes, executable and data. The

25

Fe
br

ua
ry

 2
01

2
–

Iss
ue

 2
59

www.circuitcellar.com • CIRCUIT CELLAR®

Table 2—Critical data structures

Structure MBR Location

Pseudo-descriptor IDT 0x194

Pseudo-descriptor GDT 0x1BA

Null descriptor 0x1C0

Table 1—Anatomy of the MBR

Description MBR Location

Determining the current address while the processor is still in real mode after power on. BIOS has loaded the MBR somewhere

into the memory and transferred control to our code. The current address is necessary to locate physical address of the pseudo-

descriptor, which is in turn defining a physical address and a limit for the Global Descriptor Table (GDT).

0x3E–0x4D

LGDT instruction (Load GDT register) is loading pseudodescriptor, which is pointing to GDT. 0x52

GDT and Interrupt Descriptor Table (IDT) are copied into a new memory location, beginning from linear address 0x0. GDT

and IDT are defining memory segments for the processor to operate in protected mode.

0x57–0x64

The MBR contains a very tiny 32-bit protected mode “operating system” named the NakedOS. 0x80–0x186

The NakedOS is copied into a new memory location beginning with linear address 0x800. 0x65–0x71

Switching into protected mode is accomplished by adjusting the machine status word using a LMSW instruction. 0x72–0x78

Transfer control to the NakedOS. 0x7B

Set up 8259 interrupt controller. 0xF5–0x105

Transfer control to the inquirer’s executable. 0x106

http://www.circuitcellar.com

26 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

2
–

Iss
ue

 2
59

BIOS; they are solely defined by the code.
Immediately after start-up, the NakedOS expects two

transactions: one for the executable code and another for
data. Each transaction is a stream of bytes sent via the

is absolutely transparent. Its code is available on the Circuit
Cellar FTP site.

The NakedOS defines several memory segments, which
are useful as an initial environment for the inquirer’s exe-
cutable (see Table 3). Intel documentation provides an
explanation for protected mode memory segments, global
descriptor table (GDT), and interrupt descriptor table
(IDT).[2] In addition, the NakedOS defines two software
interrupts and a base vector for hardware interrupts. Note
that the IDT interrupts have nothing to do with DOS or

Table 4—The format of NakedOS transactions. The first 4 bytes
indicate the length of the subsequent byte stream.

Byte index 0 1 2 3 0 1 2 … N-1

Description Length, N Executable code or data

Table 3—Memory segments and interrupts defined by the NakedOS

Segment Base Size Descriptors, type

Extended memory 0x100000 ~128 Mb 0x28, data

Screen, character mode 0x0B8000 4 Kb 0x20, data

Target executable 0x93B 64 Kb

0x30, code 32

0x38, data

NakedOS 0x800 315 bytes 0x10, code 32

Stack 0x400 1024 bytes 0x18, stack 32

System data

IDT: 0x3FF–0x200

GDT: 0x1FF–0

0x0 1,024 bytes 0x8, data

Interrupts Info

INT 0x20 Read a packet from serial port; destination ES:[EDI]; mandatory condition DS=ES. First 4 bytes of the packet

indicate in bytes the length of the subsequent string. Upon return, ECX contains the number of bytes received.

INT 0x21 Send to serial port a string of ECX bytes, located at DS:[ESI].

IRQ0 Hardware interrupts base vector is 0x28.

Circuit Cellar feature articles are contributed by professional engineers, academics, and students from

around the globe. Each month, the editorial staff reviews dozens of article proposals and submissions.

Only the best make it into the pages of this internationally respected magazine.

Get PUBLISHED. Get NOTICED. Get PAID.

Do you have what it takes?

editor@circuitcellar.com

Contact C. J. Abate, Editor-in-Chief,

 today to discuss the embedded design projects

and programming applications

you’ve been working on and

your article could be featured

in an upcoming issue

of Circuit Cellar magazine.

mailto:editor@circuitcellar.com
http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 27

Fe
br

ua
ry

 2
01

2
–

Iss
ue

 2
59

RS-232 (see Table 4). The first transaction is written into the
memory segment “target executable,” while the second
transaction goes into the “extended memory” segment. After

the second transaction, the NakedOS
transfers control to the executable by a
long jump: jmp 00030:000000000. From
that moment, in principle, any memory
occupied by the NakedOS can be overwrit-
ten by the activities of your executable.

The hardware interrupts are normally
masked when the NakedOS is running;
however, the 8259 interrupt controller
is set up (refer to the Circuit Cellar FTP
site) to handle them if you decide to
unmask them. Detailed instructions on
programming the interrupt controller
are provided in the documentation for
the ICH.[4]

THE NakedCPU EXPLORER
An important issue remains: sending

an executable to the NakedCPU to con-
duct experiments. At the beginning of
this article, I said two computers are
involved. The master has a Microsoft
Visual C++ project, the NakedCPU
Explorer, which acts as a “shell” that
enables the inspection and modification

of chipset registers and memory. The code defines a class
having a constructor, which provides __asm{} brackets for
you to fill with executable code (see Listing 1).

Listing 1—A fragment of a constructor for a class derived from NakedCPUcode

...
DWORD pe, ps;
__asm
{

mov pe, offset end // mandatory label end
mov ps, offset start // mandatory label start
jmp end // master jumps over the code
/////////////////////////
start: mov ax, 0x28 // loading

mov es, ax // data and
mov ds, ax // stack
mov ax, 0x18 // segment registers
mov ss, ax // initializing
mov esp, 0x3fe // stack pointer
//...
//here goes executable code
//...
_emit 0xEA // this is
_emit 0x00 // a long jump to
_emit 0x00 // finish the executable
_emit 0x00 // and transfer control
_emit 0x00 // to NakedOS
_emit 0x10 // (if it is still
_emit 0x00 // in the memory)

end: nop
}
...

Save 30% on all titles when you purchase from www.newnespress.com.
Enter promotional code Newnes30 at checkout.

Register for our e-news at newnespress.com
 Find us on Facebook!

By: Peter Wilson
ISBN: 9780080971384

By: Lucio Di Jasio
ISBN: 9781856178709

By Morgan Jones
ISBN: 9780080966403

By: Art Kay
ISBN: 9780750685252

N e w n e s P r e s s

Education Never Ends. Everything you need to know to get started.

tiodu tiocaduEE

er Endser Enn Nevn Ne
w nw nN e

eed tu nog yerythinvE. ds
ses P re

ed.tartt seo gw too kneed t

s

ed.

avS

tioomorer ptEn
en ys whn all title oe 30%avave 30%

k!cebooan Fn Fas od uinFFin

cke cht as30eewnNe al codntio
m wwwore fsahcuru poen y

ur e-nr ooer fer fotter fRegis

.touck
.m.cosserpsewne.nm www

.cosserrepsspeewnt news aur e-n

m.co

http://www.circuitcellar.com
http:www.newnespress.com

28 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

2
–

Iss
ue

 2
59

Dr. Alexander Pozhitkov (pozhit@uw.edu) has an MS degree in
Chemistry and a PhD in Genetics from Albertus Magnus University
in Cologne, Germany. He has been working for 12 years on
interdisciplinary research involving molecular biology, physical
chemistry, software, and electrical engineering. Currently, Dr.
Pozhitkov is a researcher at the University of Washington,
Seattle. His technical interests include hardware programming,
vacuum tubes, and high-voltage electronics.

PROJECT FILES
To download the code, go to ftp://ftp.circuitcellar.com/
pub/Circuit_Cellar/2012/259.

REFERENCES
[1] Intel Corp., “Intel Core 2 Duo Processor E8000 and
E7000 Series Datasheet,” 2009, http://download.intel.
com/design/processor/datashts/318732.pdf.

[2] ———, “Intel 64 and IA-32 Architectures Software
Developer’s Manuals,” www.intel.com/content/www/
us/en/processors/architectures-software-developer-
manuals.html.

[3] ———, “Intel 4 Series Chipset Family, Datasheet”
2010, www.intel.com/Assets/PDF/datasheet/319970.pdf.

[4] ———, “Intel I/O Controller Hub 10 (ICH10) Fami-
ly, Datasheet,” 2008, www.intel.com/content/www/
us/en/io/io-controller-hub-10-family-datasheet.html.

[5] M. Klasson, “HexIt – The Hex Editor,” 2011,
http://mklasson.com/hexit.php.

RESOURCE
E. Nisley, “Journey to the Protected Land,” Circuit
Cellar 48–65, 1994–1995.

SOURCES
Intel Core 2 Duo Processor
Intel Corp. | www.intel.com

Visual C++ Integrated development environment (IDE)
Microsoft Corp. | www.microsoft.com

Since Visual C++ is running on the master PC with an
Intel CPU, the compiler translates the Assembly code
into appropriate opcodes, which are naturally suitable for
the NakedCPU! Specifically, this class is derived from
another class, NakedCPUcode, which performs preparato-
ry work by extracting the opcodes produced from the
code in the __asm{} brackets and making them available
for sending over to the NakedCPU. Note that the Naked-
CPU only receives the code between start and end
labels. It is important to understand that the master
computer will not execute the code in the __asm{}
brackets; it simply jumps over it. The strange keyword
_emit enables the direct placement of opcodes by their
hexadecimal values. For some reason, a long jump is not
permitted when using the Visual Studio compiler.
The project also defines a class SerialComm and a

function SendNakedCPUdataRecvResponse to send and
receive data. It is worthwhile to examine the project’s
straightforward code to understand the details of communica-
tion with the NakedCPU. Besides serving as an example, the
NakedCPU Explorer sends an executable to the NakedCPU,
which permits the interactive examination and modification
of various chipset and I/O controller registers. The Naked-
CPU Explorer offers eight commands: write, write32,
read, read32, pci, memread, memwrite, and quit. The first
four commands will ask for a port address (i.e., an address in
the CPU I/O space). With these commands, the NakedCPU
will write to and read from a GMCH or ICH register, 1 or 4
bytes. The fifth command will ask for Bus (decimal), Device
(decimal), Function (decimal), and Register (hexadecimal) val-
ues. Their values will be packed into the port 0xCF8 to open
a “window” into the PCI configuration space that’s accessible
via port 0xCFC. Details on addressing PCI devices are provid-
ed in the chipset documentation.[3] The memread and
memwrite commands enable the reading and writing of dou-
ble words from and to the memory, respectively.
A regular PC, ubiquitous in most homes, is filled with

powerful and interesting hardware. Unfortunately, it tends to
be difficult to experiment with PCs due to the lack of docu-
mentation and overly protective OSes. The first part of this
article detailed at the path to the hard-to-find documentation.

I also described the NakedCPU, which is my OS-free
platform for experimenting with a PC’s internals.

NEW EXPERIMENTS
The NakedCPU is controlled from another computer, the

master, which provides you with an interface. In the next
part of this series, I’ll describe how to use the NakedCPU
Explorer for experiments with the speaker, parallel port,
and LAN adapter. In addition, I’ll give you a peek at the
BIOS—the power-on code in particular. Undoubtedly, the
suggested experiments will be stepping stones to help you
begin even more interesting research. I

Author’s note: The NakedCPU Explorer does not use any
hidden “helper” drivers or libraries. The code is entirely
transparent for the inquirer’s perusal.

“Immediately after start-up, the NakedOS
expects two transactions: one for the
executable code and another for data.
Each transaction is a stream of bytes
sent via the RS-232. The first transaction
is written into the memory segment
‘target executable,’ while the second
transaction goes into the ‘extended
memory’ segment. After the second
transaction, the NakedOS transfers
control to the executable by a long
jump: jmp 00030:000000000.”

mailto:pozhit@uw.edu
http://www.intel.com/Assets/PDF/datasheet/319970.pdf
http://mklasson.com/hexit.php
http://www.intel.com
http://www.microsoft.com
http://www.circuitcellar.com
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2012/259
http://download.intel.com/design/processor/datashts/318732.pdf
http:www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/io/io-controller-hub-10-family-datasheet.html

