
Microsoft Windows.
Now it’s time to consider actual experiments that

open up the possibilities for further research! Using the
NakedCPU Explorer I presented in Part 1, I will explore
the BIOS power-on code, describe how to make the
speaker produce some noise, and explain how to read
and write the parallel port. In the end, I will detail how I
experimented with the LAN adapter and received and
dissected network packets.

art 1 of this two-part series covered the hardware
of a computer based on an Intel CPU. I detailed

the NakedCPU, which is an operating system-free exper-
imental platform. The platform consists of two comput-
ers connected via a serial port. One computer, the
NakedCPU itself, is booted up with a tiny 32-bit pro-
tected-mode start-up code. After the start-up, this com-
puter waits for a stream of executable and data bytes
coming from the master computer, which is running

42 CIRCUIT CELLAR® • www.circuitcellar.com

M
ar

ch
 2

01
2

–
Iss

ue
 2

60

The first part of this two-part series provided an overview of the NakedCPU platform,
which is designed to provide full access to hardware and a CPU without any operating
system restrictions. This article explores the BIOS power-on code, noise production, and
reading and writing from the parallel port. Experiments with a LAN adapter and network
packets are also covered.

The NakedCPU (Part 2)

P

FE
AT

UR
E

ARTICLE
by Alexander Pozhitkov (USA)

Experimentation and Communication

Listing 1—This is the protocol created as a result of reading ICH documentation and conducting a few experiments.

>write //Speaker enabled. NakedCPU begins producing a continuous sound.

Port address: 0x61

Value: 0x3

>write //Change the default frequency by writing a timer configuration word. Sound stops,

Port address: 0x43 //because timer is expecting to receive a 2-B divisor. Write a new value 0x0110 in two

Value: 0xbe //transactions, after which the NakedCPU will begin producing a high-pitch noise.

>write

Port address: 0x42

Value: 0x10

>write

Port address: 0x42

Value: 0x1

>write //Write a larger divisor 0x2000 to lower the frequency. Writing the configuration

Port address: 0x42 //word is not necessary.

Value: 0x0

>write

Port address: 0x42

Value: 0x20

http://www.circuitcellar.com
nprice
Text Box
Circuit Cellar. Reprinted by permission. Entire contents copyright ©2012 Circuit Cellar, Inc. All rights reserved. For subscription information, go to www.circuitcellar.com/subscription, call 800-269-6301, or email circuitcellar@pcspublink.com.

range of high BIOS, a small executable for the NakedCPU
was prepared. The executable defined a segment of memory
addressing high BIOS and sent the content of the 16 bytes
below 4 GB back to the master computer. As expected,
there was a short jump to approximately 30 KB below. The
executable was modified to download the entire chunk of
memory 30 KB below 4 GB up to the top. Curious inquirers
are welcome to investigate the saved content and the
code of the executable, which are available on Circuit
Cellar’s FTP site. As a general impression, one can see
many accesses to PCI bus and calls for CPUID instruction.
It certainly makes sense. Various devices have to be set up
and BIOS is attempting to determine which processor is
being used.

NETWORK
Communication via the network is accomplished using

the media access controller (MAC). Documentation is
available from Intel. It is also helpful to read the first
three chapters of the IEEE 802.3-2008 standard to get an
idea of the low-level network lingo as well as the packet
format sent over the wires.[3]

The NakedCPU Explorer enabled me to investigate the
internals of the MAC and conduct some experiments.
The MAC requires data structures in memory and con-
figuration transactions via the I/O address space. The
first step is to determine the I/O address of the MAC,
which is called Base Address 2 (BAR2). The address is
stored in the PCI configuration space at bus 0, device 25,
function 0 (B0:D25:F0) register 0x18. By the way, there is
confusion in the documentation referring to the same
register. ICH calls this particular register MBARC, while

EXPERIMENTS: MAKING NOISE
Although it may sound trivial, making a PC speaker

produce sound involves an understanding of timers and
some low-level work. Ironically, there isn’t a way to
make a speaker beep using the Windows API on Vista or
XP 64-bit version because Microsoft decided that the
speaker hardware is obsolete.[1] Certainly, in the past,
DOS programmers must have known how to do it, but
now it seems to be forgotten. Reading input/output con-
troller hub (ICH) documentation and conducting a few
experiments resulted in the protocol for the NakedCPU
Explorer shown in Listing 1.[2]

LIGHTING AN LED
The parallel port is becoming more and more obsolete.

Nevertheless, it offers a possibility to read and send
more than eight lines of data. Strangely, ICH documen-
tation does not say anything about programming a paral-
lel port. Browsing the Internet reveals that there is still
some interest regarding the parallel port and program-
ming information is available. Connect an LED to the
D2 port line via a 470-Ω resistor and follow the protocol
in Listing 2, which demonstrates writing to and reading
from the parallel port.

THE “FIRST CRY”
Which instruction does the processor execute first after

powering on? Intel documentation says that the processor
reads its first instruction from the address 0xFFFFFFF0 (i.e.,
16 bytes below 4 GB).[2] Attempting to examine this address
with a debugger is fruitless. (I tested it, and it did not
work.) In order to reach this high address, which is in the

43

M
ar

ch
 2

01
2

–
Iss

ue
 2

60

www.circuitcellar.com • CIRCUIT CELLAR®

Listing 2—This protocol demonstrates writing to and reading from the parallel port.

>write //Parallel port turns into Extended Capabilities Port mode via modification of
//the Extended Control Register (0x77A). Line D2, goes HIGH and LED glows.

Port address: 0x77A
Value: 0x34
>write
Port address: 0x378
Value: 0x4

>write //Reading from LPT is also possible. By writing 0x2c into the Port Control
//register (0x37A), we make parallel port read. The LED slightly glows
//indicating that pull up resistors are enabled in the reading mode.

Port address: 0x77A
Value: 0x34
>write
Port address: 0x37A
Value: 0x2c

Listing 3—Instructions for conducting PCI transactions

>pci //PCI transaction consists of two steps: define the
//location and read the content.

Enter Bus Device Function 0xRegister: 0 25 0 0x18
>read32
Port address: 0xcfc
ecc1

http://www.circuitcellar.com

44 CIRCUIT CELLAR® • www.circuitcellar.com

M
ar

ch
 2

01
2

–
Iss

ue
 2

60

that, BAR2+0x4 (0xECC4) becomes a
window to the value of that MAC
register. It is important to mention
that BAR2 and BAR2+0x4 accept
only 32-bit double-word read/write
operations. The MAC registers have
plenty of bits to deal with and some
bits are dependent on one another. It
is difficult to understand the settings
just by looking at the hexadecimal
value of a register. An Excel work-
sheet, InterpretRegister.xls (also
available on Circuit Cellar’s FTP
site), features a macro that helps in
this situation. Specifically, a table
containing bit descriptions should be
copied and pasted from the hardware
documentation, and a hexadecimal
value of a register will be converted
into binary 1s and 0s in appropriate
cells right next to the description
text (see Table 1).
Let us examine the CTRL(0x0) and

the MAC documentation calls it
BAR2. Conduct PCI transactions
with the NakedCPU Explorer (see
Listing 3).[2, 4]

The number 0xECC1 means the
I/O address is actually 0xECC0 with
the 0th bit hardcoded to 1 to indicate
that the address is indeed in the I/O
space as opposed to being memory-
mapped.[4] The latter indication is
important because all configuration
and communication with the MAC
can also be done using memory-
mapped registers, which is faster.
However, for our experiments, it is
sufficient to use the I/O space,
because it is simpler and accom-
plishes the same results as memory-
mapped operations.
In order to interact with the MAC,

the inquirer writes an address of a
register within the MAC into the
BAR2 I/O address (0xECC0). After

Listing 4—The code shown after power-on with the network cable unplugged

>write32 //This particular bit constellation

//determines among other things

//enabled automatic configuration for

//speed and full/half duplex.

Port address: 0xecc0

Value: 0

>read32

Port address: 0xecc4

100240

>write32 //These bits tell that there is no

//link established but initialization

//is completed.

Port address: 0xecc0

Value: 0x8

>read32

Port address: 0xecc4

80080600

STATUS(0x8) registers. The address of
each register is provided in parentheses.
After power-on with the network cable
unplugged, you will see what is shown
in Listing 4.
After connecting the master computer

with the NakedCPU via a network
cable, the CTRL register stays the
same as expected, while the STATUS
register changes to 0x80080683. The
new value means full duplex commu-
nication, established link, and 1-Gbps
speed. The master computer running
Windows XP reported the same com-
munication parameters, which indi-
cates that the NakedCPU network
interface was able to negotiate with
the master computer’s interface on the
hardware level.

RECEIVING & INTERPRETING
NETWORK PACKETS
In this section, I’ll cover how to

experiment with reading network
packets originated from the master
computer. I found that when the
master computer detected the live
NakedCPU via the network cable,
Windows began generating DHCP
requests. These requests are
attempts to obtain an IP address and
other high-level network settings
because Windows assumes (erro-
neously) that the NakedCPU is a
router or a network server. Although
Windows is mistaken, this is per-
fectly fine for our experiments,
because we can catch these packets
and examine them.
The MAC uses direct memory

access to store the received data. We

Table 1—A breakdown of the value 0x4100240 (top right) into bits is shown as a fragment of the worksheet. Bits appear after textual
descriptions of the individual fields.

Field BitEnd BitStart Initial Value Description 4100240

FD 0 0 1b Full-Duplex controls the MAC duplex setting when explicitly set by software.

Loaded from the NVM word 13h 0b = Half duplex. 1b = Full duplex.

0

Reserved 1 1 0b Reserved, write as 0b for future compatibility. 0

Master Disable 2 2 0b When set, the MAC blocks new master requests on the PCI device. If no master

requests are pending by this function, the Master Enable Status bit is set.

0

Reserved 5 3 000b Reserved, write as 0b for future compatibility. 000

Reserved 6 6 1b Reserved. 1

Reserved 7 7 0b Reserved, always set this bit to 0b. 0

SPEED 9 8 10b Speed selection. These bits determine the speed configuration and are written

by software after reading the PHY configuration through the MDIO interface.

These signals are ignored when autospeed detection is enabled. 00b = 10

Mbps 01b = 100 Mb/s 10b = 1,000 Mbps 11b = not used

10

Reserved 10 10 0b Reserved, write as 0b for future compatibility. 0

http://www.circuitcellar.com

SSaattuurrddaayy MMaarrcchh 3311
88::3300 aa..mm.. -- 77::0000 pp..mm..

RRoobboott PPrraaccttiiccee

1100::0000 aa..mm.. -- 1111::3300 aa..mm..
RRoobboottiiccss WWoorrkksshhooppss

1122::3300 pp..mm.. -- 11::4455 pp..mm..
RRoobboottiiccss KKeeyynnoottee SSppeeaakkeerrss

22::0000 pp..mm.. -- 44::0000 pp..mm..

RRoobbooWWaaiitteerr CCoommppeettiittiioonn

SSuunnddaayy AApprriill 11
1111::0000 aa..mm.. -- 44::0000 pp..mm..

Versa Valves, Inc. presents

FFiirreeffiigghhttiinngg HHoommee RRoobboott
CCoonntteesstt

TTrriinniittyy CCoolllleeggee
RRoobboottiiccss CCoommppeettiittiioonnss

HHaarrttffoorrdd,, CCoonnnneeccttiiccuutt,, UUSSAA

Shown left: 2011 Winner, MonsterBot from Massachussetts, USA Trincoll.edu/Events/Robot

Proudly Sponsored by:

http://www.trincoll.edu/Events/Robot

46 CIRCUIT CELLAR® • www.circuitcellar.com

M
ar

ch
 2

01
2

–
Iss

ue
 2

60

have to create several descriptors to tell the MAC where
to write the data. Thus, two memory ranges are required:
one for the descriptors and the other for packets. Refer
back to Table 3 in Part 1 of this series. You can see there
is an area of memory above the address 0x100000 available
for the inquirer’s data. Bearing in mind that the Naked-
CPU Explorer uses a tiny bit of that memory to store
incoming commands, we can safely use addresses above
0x100500. It is sufficient to create two descriptors for the
initial experiments. A descriptor is a data structure of four
double words (16 bytes). The first two double words are a
64-bit physical address of the location where the packet is
to be stored. With the NakedCPU Explorer’s ability to
write into memory locations, I can create the descriptors
at the address 0x100500, pointing to two 512-byte long
buffers located at the addresses 0x101000 and 0x101200. A
collection of descriptors is called a “queue.” After the
MAC finishes storing packets, it updates the descriptors to
indicate the received packet size, errors, and several other
parameters (see Listing 5).
The MAC has to know the location of the descriptors,

the size of the receive buffers, and the type of packets to
receive. This information has to be stored in several
MAC registers: RDBAL0(0x2800) and RDBAH0(0x2804)—
low and high portions, respectively, of a 64-bit physical
address of the base of the queue; RDLEN0(0x2808)—
length of the memory buffer allocated for the queue;

RDH0(0x2810) and RDT0(0x2818)—head and tail pointers,
respectively; RFCTL(0x5008)—receive filter control register;
and RXCSUM(0x5000)—receive checksum control register.
Before setting up these registers, bit 26 of the CTRL(0)
register has to be set to 1, which causes the MAC to
reset. After setting up all registers, data reception is initi-
ated by writing into RCTL(0x100) to set up the “enable”
bit, the size or the receive buffers reception mode, and
the type of descriptors.
For the CTRL, RCTL, RFCTL, and RXCSUM registers,

the InterpretRegister.xls worksheet shows values (and bit
states) that will be used in our experiments. The meaning
of value for the RDLEN is somewhat confusing. Accord-
ing to the documentation, the length of the queue buffer
must be a multiple of 128, which means at least eight
descriptors (128/16) must be in the queue. However, we
have only two descriptors. I determined experimentally
that it is not a problem to tell the MAC that the queue
buffer is larger than it needs to be, as long as the RDT0
register is pointing to the end of the actual queue.
Hence, for my particular experiment, I set RDLEN =
0x80, RDT0 = 0x2.
In order to set the MAC registers, I had to copy and

paste the columns from Table 2 into the NakedCPU
Explorer in the same order, column I through V. Note
that at the end of the fourth step, the MAC is ready to
enable reception. That step ends up in reading from the

Table 2—Commands and values to be pasted into the NakedCPU Explorer

I II III IV V

write32 write32 write32 write32 write32

0xecc0 0xecc0 0xecc0 0xecc0 0xecc0

0 0x2804 0x2810 0x5008 0x100

write32 write32 write32 write32 write32

0xecc4 0xecc4 0xecc4 0xecc4 0xecc4

0x4100240 0 0 0x8000 0x402800A

write32 write32 write32 write32

0xecc0 0xecc0 0xecc0 0xecc0

0x2800 0x2808 0x2818 0x8

write32 write32 write32 read32

0xecc4 0xecc4 0xecc4 0xecc4

0x100500 0x80 0x2

Listing 5—After the MAC finishes storing packets, it will update the descriptors to indicate received packet size, errors, and several other
parameters such as these.

>memwrite //The command “memwrite” asks for the address and the number

//of double words to be written. Note, writing below 0x100000

//will cause general protection fault and reboot of the NakedCPU.

0xAddress above 0x100000: 0x100500

Num dwords: 8

0x101000

0

0

0

0x101200

0

0

0

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 47

M
ar

ch
 2

01
2

–
Iss

ue
 2

60

status register, which should result
in a value of 0x80683. This value is
similar to the one previously
described (0x80080683) with the dif-
ference that bit 31 is cleared, which
indicates that the DMA clock cannot
be lowered to one quarter of its
value. The reason why the MAC
changed its “mind” concerning the
DMA clock is not clear, but this is
not relevant for our experiments. I
initiated the sending of DHCP pack-
ets by typing ipconfig/renew in the
Master’s command-line tool.

After reading from the network,
the MAC updates the two descriptors
(see Figure 1). With the memread
command, observe the new values by
reading eight double words beginning
from the address 0x100500. You will
see that the descriptor’s address field
is changed and two additional values
appeared. An inset shows the new
values my computer produced.
Detailed information about the
fields is provided in the MAC docu-
mentation.[4] Briefly, the lengths of
the packets are 342 bytes (0x156).
No errors occurred, the descriptors
are indicated as “done,” and the
entire packet fits with the buffer
(0x20073).

The MAC stored the two actual

and the 2-byte length/type field. The
latter field is transmitted with most-
significant byte first, which makes it
0x0800. If the value of the length/type
field is less than or equal to 0x05DC,
then it indicates the length of the
packet, otherwise its type (Ethertype).
Information found at the Institute of
Electrical and Electronics Engineers

packets at the addresses 0x101000 and
0x101200, respectively. Their contents
are present in the InterpretRegister.xls
“Packets” worksheet. Figure 2 shows
the beginning of the stored data array
and the order of transmission. The
first 6 bytes marked in blue are the
destination (broadcast) address, which
are followed by the source addresses

Figure 2—The beginning of the stored data
array and the order of transmission

f f f f f f f f

b a a 4 f f f f

6 e 8 0 f 3 d b

0 0 4 5 0 0 0 8

. . .

Figure 1—The descriptors updated by the
media access controller (MAC)

Descriptor 1

0

f8270fe8

20073

156

Descriptor 2

0

f8270fe9

20073

156

“The NakedCPU platform enables developers to create
task-specific applications using only necessary components.
For instance, for a large-scale database, there is no
need to support a GUI, USB plug-and-play, audio
cards, .NET, and many other things. An additional
bonus is that the NakedCPU platform is immune to
viruses. As in biology, where flexible viruses attack
well-evolved organisms, computer viruses attack well-
developed operating systems. With the NakedCPU, on
the other hand, a particular task-specific solution can
be very unique. Therefore, virus creators simply won’t
have enough information to explore potential security
holes.”

!��������������	����%#�#"'%# �%

��$���$%#'#'+$�"���#%�������(���&����''�%+��#)�%�����&��"&��"�
�����'����, #%'�*-�����$$ ���'�#"&�

�''$
��!����#%��

http://www.circuitcellar.com
http://mbed.org

48 CIRCUIT CELLAR® • www.circuitcellar.com

M
ar

ch
 2

01
2

–
Iss

ue
 2

60

(IEEE) website in theory provides spe-
cific Ethertype values; however, it is
virtually impossible to find the actual
list of values. Luckily, Wikipedia
points to an exact URL in the innards
of the IEEE site. According to the
standard, Internet protocol (IP) is des-
ignated with the Ethertype 0x0800.
Apparently, the next step is to investi-
gate the format of the IP, described in
RFC894, which points to RFC791.[5]

The fields of the IP header are trans-
mitted in a similar way as the previ-
ously described length/type field (i.e.,
the most-significant bit and the most-
significant byte first). In contrast to the
intuitive notation, where bit 0 is the
least-significant bit, RFC791 provides
the opposite, with bit 0 as the most-
significant bit. Table 3 shows the con-
tinuation of the received packet and
the assignment of its specific values to
the fields of the first 32 bits of the IP
header. The important fields are IHL
and Total Length. IHL indicates the
number of 32-bit words in the header.
In my case, it is five, which means
according to RFC791, the Options and
Padding fields are omitted. It is inter-
esting to note that the MAC reported
receiving 342 bytes and the IP header
indicated 328 (0x0148) bytes. The dif-
ference of 14 bytes makes perfect
sense. They make up to 2 bytes of the
length/type field plus 2 × 6 bytes of
destination and source hardware
addresses.
All other fields of the IP header are

easy to map following this example.
Specifically, the field values are: Iden-
tification—0x0fe8 (packet 1), 0x0fe9
(packet 2); flags and fragment offset—
0; time to live—0x80; protocol—0x11;
header checksum—0x29be (packet 1),
0x29bd (packet 2); source IP address—
0.0.0.0; and destination IP address—
255.255.255.255. It is understandable
that the master PC is asking for an IP
address while doing the dynamic host
configuration process. Therefore, the

source IP address is all zeroes. For the
destination, the address is all
255.255.255.255, which is a broadcast
address, similar to the hardware
broadcast address (6 bytes, all 255).
The value for the protocol field is

0x11 (17). According to RFC790, it
refers to the user datagram protocol
(UDP)—the next level of data encapsu-
lation—which is described in RFC768.
According to that document, a UDP
header contains four 16-bit words. In
the order of transmission, these words
are source port, destination port, length,
and checksum. The values received by
the NakedCPU in my experiment were:
source port—0x0044, destination port—
0x0043, length—0x0134, and check-
sum—0x5c1a (packet 1) and 0x581a
(packet 2). The length of 308 (0x134)
bytes makes sense, since the IP header
reported the total datagram length of
328 bytes minus 20 bytes occupied by
the IP header. The source and destina-
tion port numbers should have been

explained in RFC790; however, it
turned out that a long chain of other
documents makes this one obsolete. At
the end of the chain, it is suggested to
look at the website of the Internet
Assigned Numbers Authority (IANA),
where, unfortunately, the information
is not well organized. It was possible,
however, to find among the obsolete
RFCs that port numbers 67 (0x43) and
68 (0x44) correspond to the Bootstrap
protocol, server and client ports, respec-
tively. The Bootstrap protocol described
in RFC1542 points to the DHCP proto-
col (see RFC2131). Figure 3 depicts all
the fields covered in this section.

FUTURE OUTLOOK
It is possible to directly experi-

ment with the Intel CPU and other
PC hardware without any layers of
unknown intermediate code intended
to make our lives “easier.” As of yet,
the most comprehensive documenta-
tion exists for the processor itself.[6]

Figure 3—This is a summary of the data fields for Ethernet, IP, and UDP protocols in the
received packets.

IP: type of service

Ethertype
F F F F F F F F

B A A 4 F F F F

6 E 8 0 F 3 D B

0 0 0 8

0 0 0 0

4 8 0 1E 8 0 F

B E 2 90 0 0 0

0 0 0 0F F F F

F F F F4 4 0 0

4 3 0 03 4 0 1

0 0 4 5

1 1 8 0

IHL

IP: total length

IP: flags and fragment offset

IP: time to live

IP: header checksum

Destination IP address

Destination UDP port

UDP checksum

IP: version

IP: identification

Source IP address

Source UDP port

UDP data length

Data for DHCP request

IP: next level protocol (UDP)

Ethernet source:
hardware address

Ethernet: destination hardware
address

0 1 0 1 1 A 5 C

7 7 D 4 0 0 0 6

0 0 0 0 B 0 6 3

. . .

Table 3—The first 32-bit word of the IP header. The top line shows the bit numbers. The left column is a fragment of the received packet.
The underlined values of the packet are broken down into the fields.

Bit: 0 – 3 4 – 7 8 – 15 16 – 31

… 00450008

E80F4801

…

Version [0x4] Internet header length (IHL) [0x5] Type of service [00] Total length [0x0148]

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 49

M
ar

ch
 2

01
2

–
Iss

ue
 2

60

PROJECT FILES
To download the code, go to ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/
2012/260.

REFERENCES
[1] Microsoft Corp., MSDN, Beep function. http://msdn.microsoft.com.

[2] Intel Corp., “I/O Controller Hub 10 (ICH10) Family Datasheet,” 2008,
www.intel.com/content/dam/doc/datasheet/io-controller-hub-10-family-
datasheet.pdf.

[3] Institute of Electrical and Electronics Engineers (IEEE) Standards Associ-
ation, “IEEE Get Program,” http://standards.ieee.org/about/get/.

[4] Intel Corp., “I/O Controller Hub 8/9/10 and 82566/82567/82562V Soft-
ware Developer’s Manual,” 2009, www.intel.com/content/dam/doc/manual
/i-o-controller-hub-8-9-10-82566-82567-82562v-software-dev-manual.pdf.

[5] The Internet Engineering Task Force (IETF), “Index of /rfc,” www.ietf.
org/rfc.

[6] Intel Corp., “Intel Core2 Duo Processor E8000 and E7000 Series
Specification Update,” 2010, http://download.intel.com/design/processor/
specupdt/318733.pdf.

RESOURCE
Internet Assigned Numbers Authority (IANA), www. iana.org.

SOURCE
Windows XP
Microsoft Corp. | www.microsoft.com

Dr. Alexander Pozhitkov (pozhit@uw.edu) has an MS in Chemistry and a PhD in
Genetics from Albertus Magnus University in Cologne, Germany. For 12 years he
has been involved with interdisciplinary research relating to molecular biology,
physical chemistry, software, and electrical engineering. Currently, Dr. Pozhitkov is
a researcher at the University of Washington, Seattle. His technical interests
include hardware programming, vacuum tubes, and high-voltage electronics.

The other hardware is not well docu-
mented, which is why it takes a sig-
nificant amount of effort to gather
pieces of information from the Inter-
net and conduct experiments. The
old books that dealt with hardware
are DOS-oriented and seriously out-
dated. The new hardware is hidden
behind layers of unknown code.
In theory, the NakedCPU platform

enables developers to create task-spe-
cific applications using only neces-
sary components. For instance, for a
large-scale database, there is no need

to support a GUI, USB plug-and-play,
audio cards, .NET, and many other
things. An additional bonus is that
the NakedCPU platform is immune
to viruses. As in biology, where flexi-
ble viruses attack well-evolved
organisms, computer viruses attack
well-developed operating systems.
With the NakedCPU, on the other
hand, a particular task-specific solu-
tion can be very unique. Therefore,
virus creators simply won’t have
enough information to explore
potential security holes. I

mailto:pozhit@uw.edu
http://msdn.microsoft.com
http://www.intel.com/content/dam/doc/datasheet/io-controller-hub-10-family-datasheet.pdf
http://www.intel.com/content/dam/doc/datasheet/io-controller-hub-10-family-datasheet.pdf
http://www.intel.com/content/dam/doc/datasheet/io-controller-hub-10-family-datasheet.pdf
http://standards.ieee.org/about/get/
http://www.intel.com/content/dam/doc/manual/i-o-controller-hub-8-9-10-82566-82567-82562v-software-dev-manual.pdf
http://www.ietf.org/rfc
http://download.intel.com/design/processor/specupdt/318733.pdf
http://www.iana.org
http://www.microsoft.com
http://www.circuitcellar.com
http://www.saelig.com
http://www.ietf.org/rfc
http://download.intel.com/design/processor/specupdt/318733.pdf
http://www.intel.com/content/dam/doc/manual/i-o-controller-hub-8-9-10-82566-82567-82562v-software-dev-manual.pdf
ftp://ftp.circuitcellar.compub/Circuit_Cellar/2012/260

