Künstliche Intelligenz und Evolution Max-Planck-Institut für Evolutionsbiologie, Plön

Carsten Fortmann-Grote

30. Januar 2024

Outline

- Einleitung
- 2 Geschichte der KI
- KI in der Wissenschaft
- 4 Wie funktionieren Neuronale Netze?
- Wie geht es weiter?
- 6 Zusammenfassung und Ausblick

Proteste gegen Rechtsextremismus

Sie sind die **Brandmauer**

Eine Bewegung müssen die Menschen, die derzeit in

Inhalt

SZ, 24.1.2024

KIOSK TITELSEITE

1956 Dartmouth, New Hampshire

A PROPOSAL FOR THE

DARTMOUTH SUMMER RESEARCH PROJECT

ON ARTIFICIAL INTELLIGENCE

- J. McCarthy, Dartmouth College
- M. L. Minsky, Harvard University
 - N. Rochester, I.B.M. Corporation
- C. E. Shannon, Bell Telephone Laboratories

dartmouth.edu

Dartmouth Conference proposal

An attempt will be made to find how to make machines use language, form abstractions and concepts, solve kinds of problems now reserved for humans, and improve themselves. We think that a significant advance can be made in one or more of these problems if a carefully selected group of scientists work on it together for a summer.

[...] theory of Turing machines [...]

Zitiert nach McCarthy et al. (1953)

A. Turing (1912 - 1954)

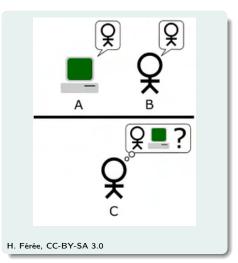
1937: Abstraktes "Computer Modell"

Mechanische Realisierung des Turing Modells mit Speicherband R. Acosta, CC-BY-SA 3.0

A. Tavenaux, CC-BY-SA 3.0

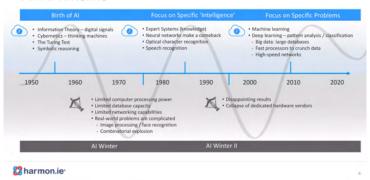
Der Turingtest

Eine Maschine (Computer) hat den Turing Test bestanden, wenn sie sich in einem blinden Gespräch ("Chat") nicht von einem menschlichen Gesprächspartner unterscheiden lässt. \Rightarrow Praktikable Definition von (genereller) KI

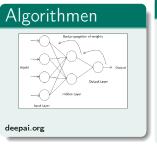


Geschichte der KI

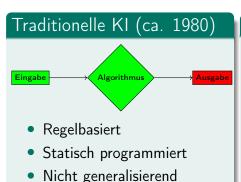
An Al Timeline



Die drei Fundamente des KI Booms



Paradigmenwechsel in der KI Programmierung

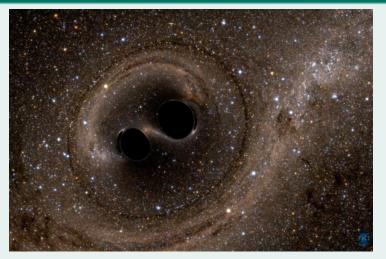


"Moderne" KI

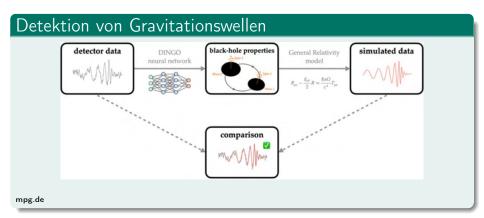
- Datengetrieben
- Lernend
- Teilweise generalisierend

KI in der Wissenschaft

Detektion von Gravitationswellen

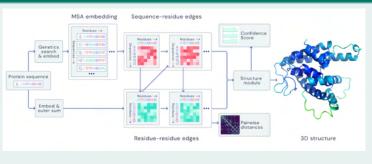


KI in der Wissenschaft



Alphafold

Vorhersage der 3D Proteinstruktur aus der Aminosäuresequenz

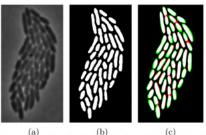


blopig.com

Januar 2024

Deep Learning (DL): Beispiele

Segmentierung



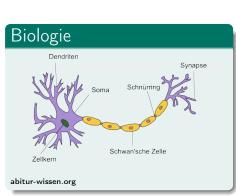
(a) (c) Figure 1: Raw image data (a), manually created ground truth binary mask (b), and (c) segmentation with DeLTA-2.0 for a cell colony in an example image from our MPB training dataset. Colored areas in (c) indice true positive (white), false positive (red), false negative (green) and true negative (black) pixel segmentation.

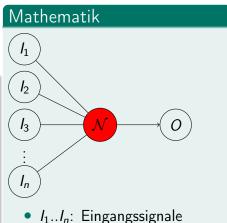
Bildbereichen werden Label (Zelle, Hintergrund) zugeordnet.

Künstliche Neuronale Netze bilden die technische Grundlage der KI

Carsten Fortmann-Grote

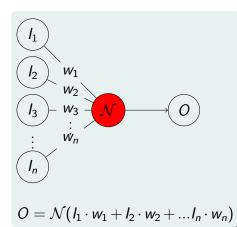
Das künstliche Neuron



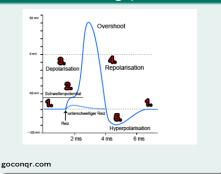


- (Input)
- \mathcal{N} : Neuron
 - O: Ausgang (Output)

Was ist \mathcal{N} ?



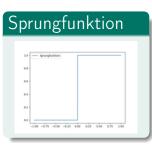
Das Aktivierungspotenzial

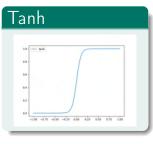


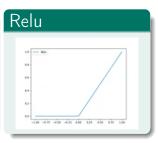
 ${\cal N}$ übernimmt die Rolle des Aktivierungspotenzials in künstlichen Neuronalen Netzen

Die Aktivierungsfunktion ${\cal N}$

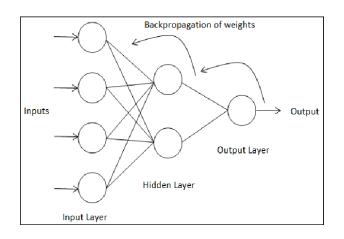
Für die Aktivierungsfunktion haben sich eine Handvoll verschiedener Formen etabliert, hier einige Beispiele:







Maschinelles Lernen mit Neuronalen Netzen = Optimierung der Gewichtsfaktoren

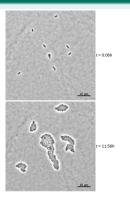


deepai.org

Beispiel: "Lernen" einer Ausgleichsgeraden (oder lineare Regression)

Künstliche Intelligenz und Evolution

Pseudomonas fluorescens SBW25



Experiment

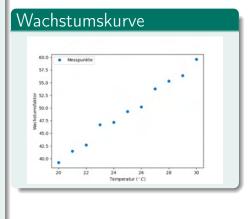
Für $T = 20^{\circ}\text{C}, 21^{\circ}\text{C}, \dots 30^{\circ}\text{C}$:

- Messung der Koloniengröße bei t=0h und t=12h
- Wachstumsfaktor F ist der Quotient aus beiden Messungen

Beispiel: "Lernen" einer Ausgleichsgeraden

Messwerte Wachstum Temperatur (° C) 20 39.2 21 41.5 22 42.7 23 46.7 24 47.2 25 49.3 26 50.2 27 53.8 28 55.3 29 56.4

30

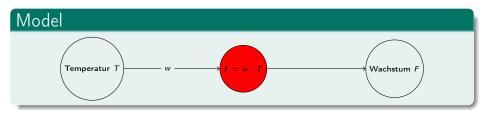


59.6

Modell des Bakterienwachstums

Aufgabe: Entwickle ein Modell, das das Bakterienwachstum als Funktion der Temperatur angibt.

Wir nutzen hierzu das einfachste Netzwerk, das man sich vorstellen kann: Es besteht aus einem Neuron mit genau einem Eingang und einem Ausgang. Die Aktivierungsfunktion ist die lineare Funktion



Temperatur (° C)	Wachstum	Modell
20.0	39.2	
21.0	41.5	
22.0	42.7	
23.0	46.7	
24.0	47.2	
25.0	49.3	
26.0	50.2	
27.0	53.8	
28.0	55.3	
29.0	56.4	
30.0	59.6	

Temperatur (° C)	Wachstum	Modell
20	39.2	40
21	41.5	42
22	42.7	44
23	46.7	46
24	47.2	48
25	49.3	50
26	50.2	52
27	53.8	54
28	55.3	56
29	56.4	58
30	59.6	60

Temperatur (° C)	Wachstum	Modell	Model - Wachstum
20	39.2	40	0.8
21	41.5	42	0.5
22	42.7	44	1.3
23	46.7	46	-0.7
24	47.2	48	0.8
25	49.3	50	0.7
26	50.2	52	1.8
27	53.8	54	0.2
28	55.3	56	0.7
29	56.4	58	1.6
30	59.6	60	0.4

Temperatur (° C)	Wachstum	Modell	Model - Wachstum
20	39.2	40	0.8
21	41.5	42	0.5
22	42.7	44	1.3
23	46.7	46	-0.7
24	47.2	48	0.8
25	49.3	50	0.7
26	50.2	52	1.8
27	53.8	54	0.2
28	55.3	56	0.7
29	56.4	58	1.6
30	59.6	60	0.4

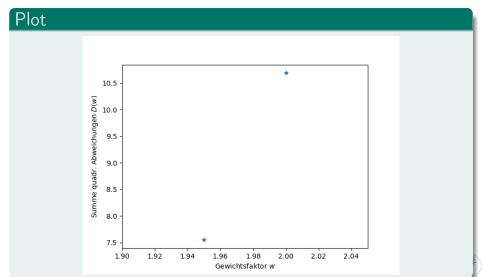
Temperatur (° C)	Wachstum	Modell	$(Differenz)^2$
20	39.2	40	0.64
21	41.5	42	0.25
22	42.7	44	1.69
23	46.7	46	0.49
24	47.2	48	0.64
25	49.3	50	0.49
26	50.2	52	3.24
27	53.8	54	0.04
28	55.3	56	0.49
29	56.4	58	2.56
30	59.6	60	0.16
22 23 24 25 26 27 28 29	42.7 46.7 47.2 49.3 50.2 53.8 55.3 56.4	44 46 48 50 52 54 56	1.6 0.4 0.6 0.4 3.2 0.0 0.4 2.5

Temperatur (° C)	Wachstum	Modell	(Differenz) ²
20	39.2	40	0.64
21	41.5	42	0.25
22	42.7	44	1.69
23	46.7	46	0.49
24	47.2	48	0.64
25	49.3	50	0.49
26	50.2	52	3.24
27	53.8	54	0.04
28	55.3	56	0.49
29	56.4	58	2.56
30	59.6	60	0.16
		Summe	10.69

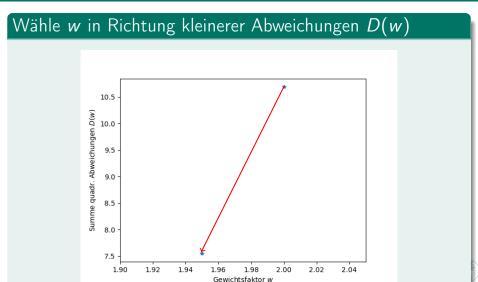
Zweiter Versuch: w = 1.95

Temperatur (° C)	Wachstum	Modell	(Differenz) ²
20	39.2	39.00	0.04
21	41.5	40.95	0.30
22	42.7	42.90	0.04
23	46.7	44.85	3.42
24	47.2	46.80	0.16
25	49.3	48.75	0.30
26	50.2	50.70	0.25
27	53.8	52.65	1.32
28	55.3	54.60	0.49
29	56.4	56.55	0.02
30	59.6	58.50	1.21
		Summe	7.55

Summe der quadratischen Abweichungen als Funktion des Gewichtsfaktors *w*

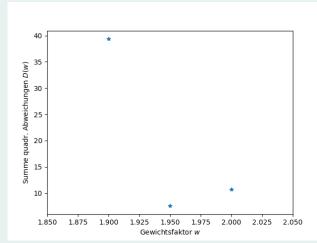


Der Gradient zeigt an wie w verändert werden muss



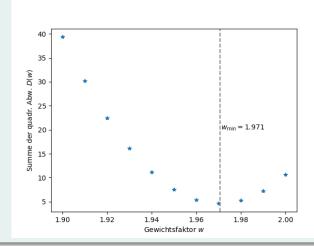
Summe der quadratischen Abweichungen als Funktion des Gewichtsfaktors *w*

Nach drei Iterationen



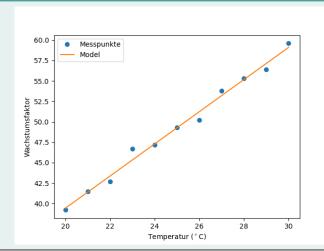
Nach 11 Iterationen

Minimierung der Quadratabstandssumme ergibt optimales Gewicht w



Ergebnis

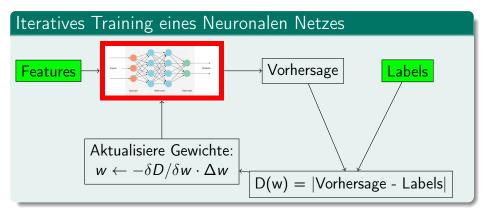
Vergleich Messdaten und Model



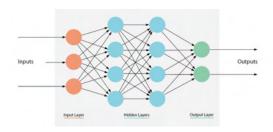
Funktionsweise Maschinelles Lernen

- Gegeben: Eingangswerte, Ausgangswerte
- Ein Model besteht aus Gewichtsfaktoren und Aktivierungsfunktionen
- Starte Lernprozess:
 - Wahl der Gewichtsfaktoren
 - Vorhersage der Ausgangswerte
 - Berechnung Entfernung Vorhersage wahre Ausgangswerte
 - ändere Gewichtsfaktoren in Richtung des absteigenden Gradienten der Entfernung
- Wiederhole bis erwünschte Genauigkeit erreicht

Der Trainingsalgorithmus



Von einzelnen Neuronen zu "tiefen" Netzwerken



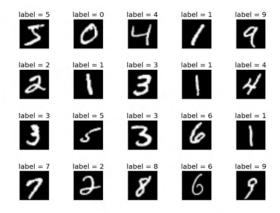
Quelle:t3n.de

Neuronale Netze können beliebig komplizierte Funktionen annähern.

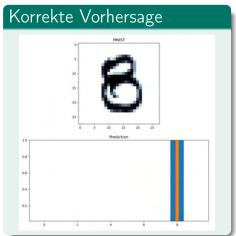
- Wachstumskurven (Temperatur ⇒ Wachstumsfaktor)
- Bildinhalte (Pixelwert ⇒ Objektklasse)
- Zusammenfassung von Texten (Langer Text ⇒ kurzer Text)

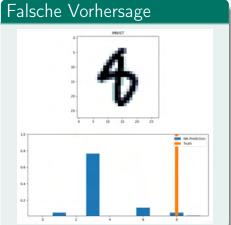
Anwendungsbeispiel: Automatisches Erkennen handgeschriebener Zahlen

Der MNIST Datensatz

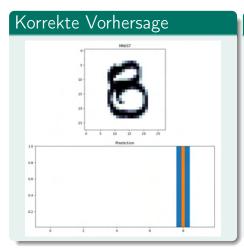


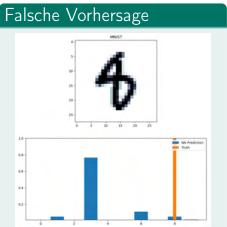
Auswertung des trainierten Modells





Auswertung des trainierten Modells





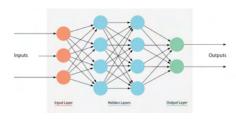
Neuronale Netze geben eine Wahrscheinlichkeitsverteilung aus!

Optimierung der Netzwerkarchitektur

Trainieren des Netzwerks = Optimierung der Gewichtsparameter

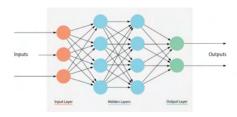
Carsten Fortmann-Grote

Optimierung der Netzwerkarchitektur



- Trainieren des Netzwerks = Optimierung der Gewichtsparameter
- Optimaler Aufbau des Netzwerks?
 - Anzahl der Netzwerkebenen
 - Anzahl der Neuronen
 - Verknüpfungsdichte
 - Aktivierungsfunktion
 - . .

Optimierung der Netzwerkarchitektur



- Trainieren des Netzwerks = Optimierung der Gewichtsparameter
- Optimaler Aufbau des Netzwerks?
 - Anzahl der Netzwerkebenen
 - Anzahl der Neuronen
 - Verknüpfungsdichte
 - Aktivierungsfunktion
 - . . .

Evolutionäre Algorithmen

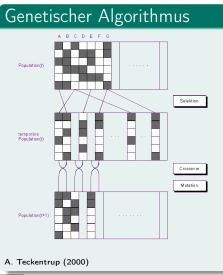
Charles Darwin (1809-1882)

G. Richmond, aus "Origins"

Bedingungen für Evolution

- Selektion
 - Vererbung
- Variabilität

Evolutionäre Algorithmen

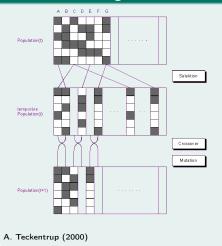


Bedingungen für Evolution

- Selektion
- Vererbung
- Variabilität

Evolutionäre Algorithmen

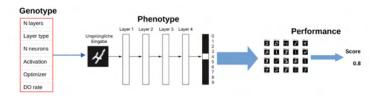
Genetischer Algorithmus



.. für Neuronale Netze

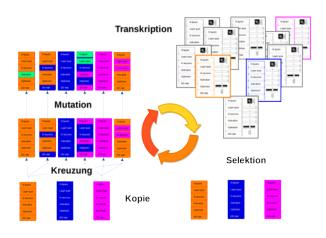
- Codierung der Netzwerkarchitektur
 - Anzahl der Netzschichten
 - Anzahl der Neuronen
 - . . .
- Lernphase: Ausbildung des Phänotyps
- Selektion nach Vorhersagekraft d. Modells
- Vererbung + Variation der Gene → Neue Generation

Genetischer Algorithmus für Neuronale Netze



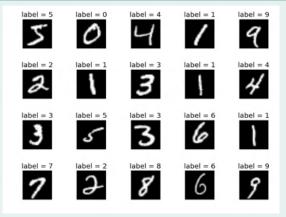
- Die besten (=genauesten) Modelle und ein paar schlechtere werden als Eltern der nächsten Generation ausgewählt.
- Durch Crossover und Mutation wird die n\u00e4chste Generation gebildet.
- Die neue Generation wird trainiert und bewertet.

Genetischer Algorithmus im Überblick



Der MNIST Datensatz

Handgeschriebene Zahlen (Multiklassen Segmentierung)



Den Eingangsdaten (Pixelwerte Schwarz-Weiss) werden Label zugeordnet (0,1,2,3,4,5,6,7,8,9)

Anwendung auf den MNIST Datensatz

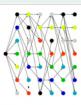
1. Generation: 90% Genauigkeit

Künstliche Intelligenz und Evolution

Anwendung auf den MNIST Datensatz

1. Generation: 90% Genauigkeit

6. Generation: >95% Genauigkeit



GPT Funktionsweise

The best thing about AI is its ability to

learn	4.5%
predict	3.5%
make understand	3.2%

wolfram.com

"... statistischer Papagei" (E. Bender, 2021)

Generative KI

GPT Erfolge

- Textgenerierung
 - Eingabe: Schlüsselbegriffe
 - Gedichte
 - Formale Texte
 - Software Quellcode

Generative KI

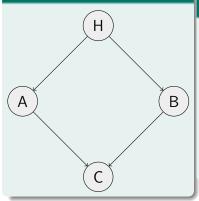
GPT Misserfolge

- Wissenschaftliche Texte (Zitationen)
- Erfundene aber realistische Inhalte ("Halluzinationen")
- Kausale Zusammenhänge

Kausalität

Eine Unterhaltung mit ChatGPT (frei nach J. Pearl, "Book of Why") ...

Kausales Model

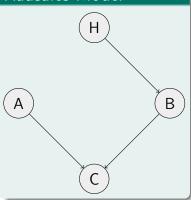


Me

Hi @chatgpt here's a story: two soldiers, A and B, serve as a firing squad. On day 1, the captain (H) orders "Fire" and both shoot, then the prisoner (C) dies. On day 2, the captain orders "fire", both shoot their guns, prisoner dies.

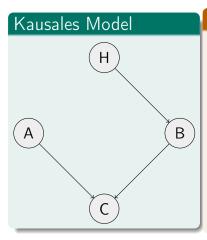
30. Januar 2024

Kausales Model



Me

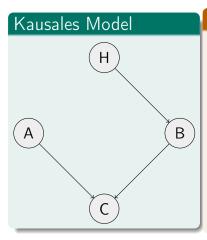
Hi @chatgpt here's a story: two soldiers, A and B, serve as a firing squad. On day 1, the captain orders "Fire" and both shoot, then the prisoner dies. On day 2, the captain orders "fire", both shoot their guns, prisoner dies. On day 3, A fires his gun. Is C alive?



ChatGPT

The story implies that on day 3, only A fires his gun. Without information about B action on day 3, it's not possible to determine the fate of the prisoner based solely on A's action Additional information is needed to conclude whether the prisoner is alive or not after day 3.

30. Januar 2024



ChatGPT

The story implies that on day 3, only A fires his gun. Without information about B action on day 3, it's not possible to determine the fate of the prisoner based solely on A's action Additional information is needed to conclude whether the prisoner is alive or not after day 3.

30. Januar 2024

Judea Pearl zu chatGPT

- GPT kommt erst nach längerer Unterhaltung und mehreren Hinweisen zur richtigen Lösung
- kann sich das kausale Modell anscheinend erschliessen
- kann kausales Modell nicht generalisieren

amstat.org

Wie könnte Generelle Künstliche Intelligenz (GKI) entstehen?

Training data:

- Quotient zweier Größen: Verhältnis
- Fahrzeug mit Eigenantrieb: Automobil

30. Januar 2024

Training data:

- Quotient zweier Größen: Verhältnis
- Fahrzeug mit Eigenantrieb: Automobil

Test data:

 Person oder Sache, die einen Prozess beschleunigt oder ermöglicht

Carsten Fortmann-Grote

30. Januar 2024

Training data:

- Quotient zweier Größen: Verhältnis
- Fahrzeug mit Eigenantrieb: Automobil

Test data:

 Person oder Sache, die einen Prozess beschleunigt oder ermöglicht

Predictions:

- GPT-2 (10⁹ Parameter): "Nach einem Brandsturm"
- GPT-3 (10¹¹ Parameter): "Katalysator"

Training data:

- Quotient zweier Größen: Verhältnis
- Fahrzeug mit Eigenantrieb: Automobil

Test data:

 Person oder Sache, die einen Prozess beschleunigt oder ermöglicht

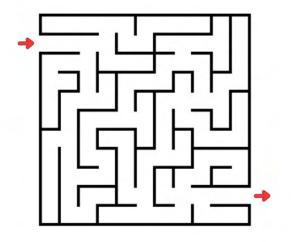
Predictions:

- GPT-2 (10⁹ Parameter): "Nach einem Brandsturm"
- GPT-3 (10¹¹ Parameter): "Katalysator"

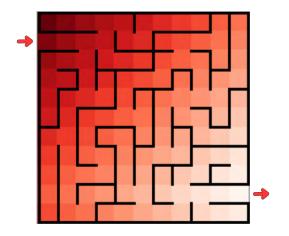
Qualitativ höherwertige Ergebnisse durch quantitativ größere Netzwerke

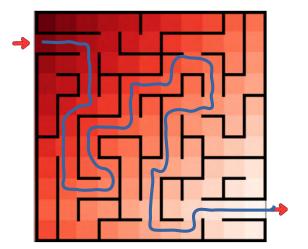
Ansatz 2: Weg mit der Optimierung

Gradientenabstieg ist keine gute Idee im Labyrinth



Gradientenabstieg ist keine gute Idee im Labyrinth





Labyrinth wird durch Novelty Search gelöst

Such, 2018

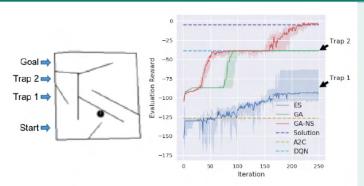


Figure 1. Image Hard Maze Domain and Results. Left: A small Novelty Scherch Zulassen newartigene Verhaltensis das erstmal weiter vom Zielaweigehtputs. The robot starts in the bottom left corner facing right. Right: Novelty search can train deep neural networks to

"Genetische Kunst" als Ev Picbreeder (Stanley, Lehm

After First Selection

24

3 The Art of Breeding Art

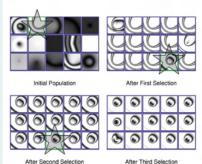


Fig. 3.2 A sequence of three selection steps in Pichreeder starting from scratch. As the user selects images, he influences the direction of evolution towards images that please thin. The *that* midicates which picture the user selects, which is the parent of the offspring images shown in the next step.

After Second Selection

After Third Selection

Fig. 3.2 A sequence of three selection steps in Pichreeder starting from scratch. As the user selects images, he influences the direction of evolution towards images that please him. The *trai* indicates which picture the user selects, which is the parent of the offspring images shown in the next step.

"Genetische Kunst" als Ev Picbreeder (Stanley, Lehm

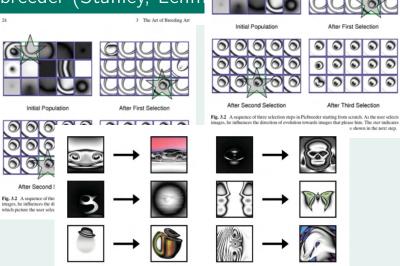
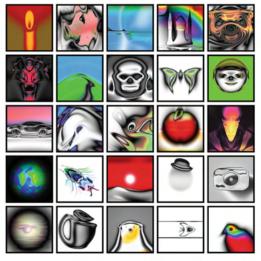


Fig. 3.6 The stepping stones rarely resemble the final products. The images on the *left* are stepping stones along the path to the images on the *right*, despite their dissimilar appearances.

3 The Art of Breeding Art



Zusammenfassung

- Ein neuronales Netz extrahiert aus den Daten die zugrundeliegenden Strukturen und Zusammenhänge und trifft statistische Vorhersagen
- Training der Netzparameter: Gradientenmethode, Backpropagation
- Hyperparametertraining mit Evolutionärem Algorithmus
- KI hat kein kausales "Weltmodell"
- Fortschritte in der KI Forschung müssen Konzepte jenseits der Gradientenmethode einbeziehen (z.B. Innovation, Neuigkeitswert)

Danke für Ihre Aufmerksamkeit!

Literaturempfehlungen

- Podcast "KI Verstehen" im DLF (https: //www.deutschlandfunk.de/ki-verstehen-102.html)
- Wikipedia Seiten zu "Maschinelles Lernen", "Künstliche Intelligenz" und ähnliche Schlagworte
- KI im Heise Verlag: https://shop.heise.de/shop-aktionen/sonderhefte/ ct-sonderheft-ki-praxis-2023-2024/

Hinweis: Der Autor hat keine privaten oder geschäftlichen Verbindungen zu den genannten Verlagen und Herausgebern.

Diese Präsentation wurde im Rahmen der Veranstaltungsreihe "MPI Winter Talks" am 30. Januar 2024 am Max-Planck-Institut für Evolutionsbiologie gehalten. Der Autor dankt für das Interesse und die lebhafte Beteiligung an der anschliessenden Diskussion. Alle Abbildungen stehen soweit nicht anders angegeben unter Creative Commons Attribution Share-Alike Lizenz Version 4.0. Für weitere Informationen zu Fragen des Copyright und der Weiternutzung und -verbreitung, besuchen Sie bitte die Internetaddresse https://creativecommons.org/licenses/by-sa/4.0/deed.en. Der Autor steht unter der Email carsten.fortmann-grote@evolbio.mpg.de für Fragen, Kritik, und Anmerkungen zur Verfügung.

