Head of Department (Director)

Profile_image

Prof. Dr. Diethard Tautz

Scientific Member
Phone:+49 4522 763 390Fax:+49 4522 763 281

Personal Website

Office

Profile_image

Sabine Meier

Phone:+49 4522 763 391Fax:+49 4522 763 281

Research Group Leaders

Profile_image

Prof. Dr. Bernhard Haubold

Research Group Leader
Phone:+49 4522 763 276Fax:+49 4522 763 281

Profile_image

Dr. Arne Nolte

Research Group Leader
Phone:+49 4522 763 372Fax:+49 4522 763 281

Dr. Floyd Reed

Department Evolutionary Genetics (Tautz)

Department Evolutionary Genetics

The group of Diethard Tautz is interested in the identification and characterization of genes involved in adaptation processes using the house mouse (Mus musculus) as a model system. It applies a broad range of genomic techniques, but also behavioral, morphological and mapping approaches. The characterization of the identified genes includes experiments in semi-natural environments.

Projects

Current research of the department is organized in many major projects, which investigate amongst others selective sweep analysis, copy-number evolution, morphology and genes, parallel selection mapping, mating and utrasound communication and de-novo evolution of genes. [more]
Research in the fledgling bioinformatics group is focused on two topics: computational genomics and speciation. In computational genomics we use modern string algorithms based on suffix trees to compare closely related genomes.

Research Group Bioinformatics (Haubold)

Research in the fledgling bioinformatics group is focused on two topics: computational genomics and speciation. In computational genomics we use modern string algorithms based on suffix trees to compare closely related genomes. [more]
The group is interested in the evolution of fish species. Although we are applying mostly genetic methods our higher level goals are to understand the organism in its environment.

Research Group Evolutionary Genetics of Fishes (Nolte)

The group is interested in the evolution of fish species. Although we are applying mostly genetic methods our higher level goals are to understand the organism in its environment. [more]

Research Group Molecular Systems Evolution (Dutheil)

The group's aim is to understand how complex molecular systems evolve. Our research is therefore at the interface of molecular evolution and systems biology. Complex systems are characterized by distinct levels of organization, comprising various systems in interaction. As a given system's properties result from the interactions of its constitutive subsystems, it is fundamental to characterize these interactions to understand evolution at both levels. In order to achieve this goal, we are using evolutionary comparative analysis of sequences, modeling of sequence evolution and molecular dynamics, but also bioinformatic and statistical analysis.
 
Our current projects include (i) the impact of biomolecules (RNA and proteins) structures on sequence (co)evolution and (ii) the effect of stochasticity in gene regulation.
[more]
A central theme that is developing in the lab is a focus on underdominance (simply, heterozygotes are less fit them homozygotes) in various ways. This includes the theoretical predictions of underdominance in the presence of population structure, possible roles of underdominance in speciation, scans for the genome distribution of underdominance among natural populations of Drosophila melanogaster, and engineering underdominance for the transformation of natural populations.

Research Group Population Genetics (Reed)

A central theme that is developing in the lab is a focus on underdominance (simply, heterozygotes are less fit them homozygotes) in various ways. This includes the theoretical predictions of underdominance in the presence of population structure, possible roles of underdominance in speciation, scans for the genome distribution of underdominance among natural populations of Drosophila melanogaster, and engineering underdominance for the transformation of natural populations. [more]
 
loading content