Contact

Dr. Tobias Kaiser
Dr. Tobias Kaiser
Max Planck Research Group Leader
Phone: + 49 4522 763-224

Kiel Evolution Center

Max Planck Research Group Biological Clocks (Kaiser)

Max Planck Research Group Biological Clocks (Kaiser)

Nature is structured in time by the continuous cycles of the seasons, night and day, the moon phases and the tides. Most organisms use endogenous biological clocks to anticipate these regular changes in their environment. To date we have a good understanding of the molecular basis of circadian clocks, which control the daily rhythms of physiology and behaviour. However, the molecular clockworks underlying seasonal, lunar and tidal rhythms are still largely enigmatic.

Our research aims to identify the molecular basis of circalunar clocks. We also study how evolution shapes biological clocks and produces timing adaptations for specific locations or habitats. Our model species the marine midge Clunio marinus (Diptera: Chironomidae), allows addressing both questions simultaneously in a highly synergistic manner.

The non-biting midge Clunio marinus lives in the intertidal zone of the European Atlantic Coast. Their adult life lasts only a few hours, which are exclusively dedicated to reproduction. The delicate event of reproduction is strictly synchronised with the lowest low tides, which recur predictably during the spring tide days around both new and full moon. To achieve this remarkable synchronisation, a circalunar clock tightly regulates development and maturation of Clunio marinus, ensuring that adults can only emerge and reproduce around full or new moon. On these days, a circadian clock times adult emergence to the time of low tide. The newly emerged adults reproduce immediately and then die in the rising tide.

While the suitable tidal situation for reproduction invariably recurs at the same time of the month and day at a given location, the timing of the tides changes tremendously along the coastline. Clunio marinus populations from different places are genetically adapted to the local pattern of the tides in various aspects of their circadian and circalunar clocks. We have shown that these heritable adaptive differences can be exploited for genetic mapping, genome screens and comparative molecular analysis in order to identify the genes underlying local timing adaptations. Applying this approach to lunar timing adaptations promises to give access to the molecular basis of circalunar clocks.

Genomic resources for Clunio marinus can be found at ClunioBase.

 
loading content